MAC protocol for WSNs (S-MAC)

Wireless Seminars

Cristina Cano

April, 16th 2007
Pompeu Fabra University (UPF)
Article Reference

Wei Ye, John Heidemann and Deborah Estrin

Medium Access Control with Coordinated Adaptive Sleeping for Wireless Sensor Networks

IEEE Communications Letters Vol. 12 No 3
Pages 493 – 506 June 2004
Introduction

• WSNs usual characteristics:
 ▪ Energy consumption constrain
 ▪ Large number of sensors
 ▪ Multihop networks

• MAC different from traditional Wireless MAC protocols

• Transceiver is the most consuming component

• MAC protocol directly influences its operation
Introduction

- **Sensor MAC (S-MAC)**
 - Main goal → Reduce energy consumption
 - Scalability
 - Collision avoidance

- **Sources of energy waste**
 - Collisions
 - Overhearing *(node picks up packet destined to other nodes)*
 - Control packet overhead *(RTS/CTS and ACK packets)*
 - Idle listening *(listening to receive possible traffic that is not sent)*
S-MAC Design

• Low duty-cycle operation
 ▪ Periodically put nodes into sleep state (radio off)
 ▪ Reduces idle listening

• Neighbouring nodes synchronize together
 ▪ Listen and go to sleep at the same time
 ▪ Schedules are exchanged by SYNC messages
 ▪ A node talks to all its neighbours at their listen time
 ▪ Known as a virtual cluster
S-MAC Design

• Collision avoidance
 ▪ Neighbours that want to talk to a node → Listening period
 ▪ They need to contend for the medium

• Channel is sensed for possible transmissions
 ▪ Physical Carrier Sense

• Duration field included in each packet → NAV
 ▪ Virtual Carrier Sense

• RTS/CTS is used
 ▪ Hidden terminal problem
Coordinated Sleeping

• Choosing a schedule
 ▪ Node listen for at least a synchronization period
 ▪ If any schedule is heard → Chooses its own and follow it
 ▪ If it receives a schedule → It adopts it

• Maintain synchronization
 ▪ Clock drift could cause synchronization errors
 ▪ SYNC packet includes the relative time of the next sleep

• Adaptive listening
 ▪ Node that overheads RTS or CTS wake up at the end of the tx
 ▪ Immediately pass data if it is the next hop
 ▪ Reduce latency
Overhearing and Fragmentation

- **Overhearing**
 - Interfering nodes go to sleep after they heard an RTS or CTS

- **Fragmentation**
 - High cost of retransmit a long message
 - Fragment the long message into small ones
 - Transmit all in a burst (only one RTS/CTS used)
 - Fairness is not so important in WSNs
Implementation

• Implementation on two types of Motes

• TinyOS
 ▪ Efficient event-driven OS for tiny sensor nodes

• Three MAC modules are tested
 ▪ 802.11-like protocol
 ▪ S-MAC without sleep
 ▪ S-MAC with periodic sleep
 • Duty cycle selection
 • Adaptive listen
Experiments

![Graph showing energy consumption vs. message inter-arrival period for different protocols]

- **IEEE 802.11-like protocol without sleep**
- **S-MAC without periodic sleep**
- **S-MAC with periodic sleep**

The graph illustrates the energy consumption (in mJ) for various message inter-arrival periods (S).
Experiments

Latency (S)

Number of hops

10% duty cycle without adaptive listen

10% duty cycle with adaptive listen

No sleep cycles
Experiments

![Graph showing effective data throughput (Byte/S) vs. number of hops for different duty cycles and adaptive listen settings.]

- No sleep cycles
- 10% duty cycle with adaptive listen
- 10% duty cycle without adaptive listen
Conclusions

• Advantages
 ▪ Scalability
 ▪ Reduced and distributed energy waste
 ▪ Needs moderate resources

• Disadvantages
 ▪ Increases latency
 ▪ Delay accumulated in each hop
 ▪ Not adaptable to traffic load conditions

• S-MAC variants

• Application dependent protocol
MAC protocol for WSNs (S-MAC)

Wireless Seminars

Cristina Cano

April, 16th 2007
Pompeu Fabra University (UPF)